MEDICAL PHYSICS 2 SS 2024

Fakultät für Physik und Astronomie, Universität Heidelberg / DKFZ Priv.-Doz. Dr. Tristan A. Kuder, Prof. Dr. Leif Schröder Preliminary schedule

Overview: Biophysics, Medical Physics, imaging techniques (US, CT, PET, MR)
1. Magnetic Resonance
1.1. Magnetism is a quantum phenomenon
Ferromagnetism, diamagnetism, paramagnetism
Magnetic moment, Landé-g factor of the elektron, nuclear magneton
Stern–Gerlach 1921, Pauli 1924, Rabi 1938
Angular momenta, Zeeman–splitting, Larmor frequency, magnetization, magnetization density for spin– $\frac{1}{2}$ systems and for spin I in general
Saturation in extremely strong magnetic fields, high-temperature approximation, polarization, static nuclear susceptibility, Curie law, Langevin paramagnetismus of free spins
Magnetization of living tissue in static magnetic field B_0 , paramagnetism of ¹ H and ³¹ P <i>in vivo</i>
1.2. Dynamics of systems of isolated spins – in Euclidean space
Temporal evolution of the expectation value of the magnetic moment
Equation of motion of magnetic moments – classical treatment, Larmor precession
Transformation into rotating frame, effective field B _{eff}
Oscillating field $(B_1(t))$, Bloch–Siegert shift
Relaxation \rightarrow Bloch equations Dipolar couplings \rightarrow Solomon equations Chemical exchange \rightarrow Bloch–McConnell equations Diffusion \rightarrow Bloch–Torrey equations
Bloch equations in laboratory and rotating frame
Solutions of the Bloch equations
Complex susceptibility, Lorentzian lineshape, impedance, filling factor, quality factor, RF energy absorbed by living tissue, specific absorption rate (SAR)
 Relaxation, minimal width of an NMR line, life time (T_1) , Phasengedächtniszeit (T_2) , homogeneous linebroadening (T_2) , inhomogeneous linebroadening (T_2^*)

QED: spontaneous transition probability of an excited proton spin in external magnetic field B_0
1.3. Pulsed Fourier–Transform NMR
0 Measurement of T ₁ : inversion recovery sequence
$\ensuremath{\textcircled{O}}$ Measurement of T_2 : spin echo sequence, phase evolution, multiecho sequence (CP, CPMG)
③ Stimulated echo, 2D NMR spectroscopy
(4) Gradient echo (T_2^*)
⑤ Rotary echo
⁽⁶⁾ Measurement of $T_{1\rho}$: spin lock
\oslash Measurement of the diffusion coefficient \rightarrow diffusion–weighted MR imaging \rightarrow diffusion tensor imaging \rightarrow kurtosis tensor imaging
Solution of the Bloch–Torrey equations for a spin echo experiment in the presence of magnetic field gradients
1.4. MR Imaging (MRI)
Localization of spin packets in 3-dimensional space
Slice selection, frequency encoding, phase encoding
Sampling theorem, Nyquist theorem, spatial resolution
2D–Fourier technique, <i>k</i> –space, multislice imaging, 3D–Fourier technique, spin echo imaging sequence, signal equation for spin echo, T_{1w} –/ T_{2w} –MRI, spoiled gradient echo sequence (FLASH), signal equation for FLASH, T_{2w}^* –MRI
1.5. Technical Aspects of MRI
Magnet Coils, RF coils, gradient systems
1.6. Fast MRI techniques and applications
Turbo Spin Echo, Echo Planar Imaging
Flow, Diffusion, Perfusion, fMRI, Hyperpolarization
2. X–rays and radioactivity
Röntgen 1895, Hounsfield units, X–ray tube, Richardson–Dusham equation, X–ray spectrum, Lambert–Beer law, interactions of high–energy photons with matter

Isotopes, natural sources radioactivity, radiation doses.
3. Radioactive-tracer techniques, nuclear medicine
3.1. Requirements for <i>in vivo</i> tracer, injected activities and amounts of β^+ -tracer in PET
3.2. Scintigraphy, SPECT
γ -camera, Anger camera, SPECT scanner, ^{99m} Tc generator, PET, FDG
3.3. Elementary processes in Positron Emission Tomography (PET)
Interactions of e ⁺ : Bhabha scattering; Mott scattering; Bremsstrahlung
Electron-positron annihilation in 2 and 3 photons
Interactions of photons with matter: Rayleigh scattering; Photoeffect; Compton scattering, Klein–Nishina differential cross section
3.4. Principles of PET Tracer production, radionuclides for PET, detection of annihilation quanta, Anger– Logic, block detector, determination of LoR, energy window, properties of scintillator materials employed in PET scanners, digital image reconstruction in PET, image resolution
3.5. Time–of–Flight (TOF) PET
3.6. Physiological imaging
Energy metabolism of the cell: glycolysis, citric acid cycle, oxidative phosphorylation
0 Disposition kinetics of FDG: 3–compartment–model for transport and phosphorylation of FDG, trapping
$\ensuremath{ @ Cardiac lipid metabolism: } \beta$ –oxidation
③ Stroke: rCBF (perfusion), rCBV, susceptibility-weighted dynamic MRI, glucoCEST
Neocortical activity: BOLD effect, functional MRI (fMRI)
S Neurotransmitter metabolism
© Catabolism of 5–fluorouracil (5–FU)